Hamiltonian and action formalisms for two-dimensional gyroviscous MHD (1405.2326v1)
Abstract: A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics (MHD) model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.