Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions (1405.1504v3)

Published 7 May 2014 in math.NT and math.PR

Abstract: Let $0 < a \le 1$, $s,z \in {\mathbb{C}}$ and $0 < |z|\le 1$. Then the Hurwitz-Lerch zeta function is defined by $\Phi (s,a,z) := \sum_{n=0}\infty zn(n+a){-s}$ when $\sigma :=\Re (s) >1$. In this paper, we show that the Hurwitz zeta function $\zeta (\sigma,a) := \Phi (\sigma,a,1)$ does not vanish for all $0 <\sigma <1$ if and only if $a \ge 1/2$. Moreover, we prove that $\Phi (\sigma,a,z) \ne 0$ for all $0 <\sigma <1$ and $0 < a \le 1$ when $z \ne 1$. Real zeros of Hurwitz-Lerch type of Euler-Zagier double zeta functions are studied as well.

Summary

We haven't generated a summary for this paper yet.