Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Maximum-Principle-Satisfying High-order Finite Volume Compact WENO Scheme for Scalar Conservation Laws

Published 6 May 2014 in math.NA | (1405.1373v2)

Abstract: In this paper, a maximum-principle-satisfying finite volume compact scheme is proposed for solving scalar hyperbolic conservation laws. The scheme combines WENO schemes (Weighted Essentially Non-Oscillatory) with a class of compact schemes under a finite volume framework, in which the nonlinear WENO weights are coupled with lower order compact stencils. The maximum-principle-satisfying polynomial rescaling limiter in [Zhang and Shu, JCP, 2010] is adopted to construct the present schemes at each stage of an explicit Runge-Kutta method, without destroying high order accuracy and conservativity. Numerical examples for one and two dimensional problems including incompressible flows are presented to assess the good performance, maximum principle preserving, essentially non-oscillatory and highly accurate resolution of the proposed method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.