Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Laplacian spectral excess theorem for distance-regular graphs (1405.0169v2)

Published 1 May 2014 in math.CO

Abstract: The spectral excess theorem states that, in a regular graph G, the average excess, which is the mean of the numbers of vertices at maximum distance from a vertex, is bounded above by the spectral excess (a number that is computed by using the adjacency spectrum of G), and G is distance-regular if and only if equality holds. In this note we prove the corresponding result by using the Laplacian spectrum without requiring regularity of G.

Summary

We haven't generated a summary for this paper yet.