Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Laplacian spectral excess theorem for distance-regular graphs

Published 1 May 2014 in math.CO | (1405.0169v2)

Abstract: The spectral excess theorem states that, in a regular graph G, the average excess, which is the mean of the numbers of vertices at maximum distance from a vertex, is bounded above by the spectral excess (a number that is computed by using the adjacency spectrum of G), and G is distance-regular if and only if equality holds. In this note we prove the corresponding result by using the Laplacian spectrum without requiring regularity of G.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.