Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Quantile Regression Model for Failure-Time Data with Time-Dependent Covariates (1404.7595v1)

Published 30 Apr 2014 in stat.ME

Abstract: Since survival data occur over time, often important covariates that we wish to consider also change over time. Such covariates are referred as time-dependent covariates. Quantile regression offers flexible modeling of survival data by allowing the covariates to vary with quantiles. This paper provides a novel quantile regression model accommodating time-dependent covariates, for analyzing survival data subject to right censoring. Our simple estimation technique assumes the existence of instrumental variables. In addition, we present a doubly-robust estimator in the sense of Robins and Rotnitzky (1992). The asymptotic properties of the estimators are rigorously studied. Finite-sample properties are demonstrated by a simulation study. The utility of the proposed methodology is demonstrated using the Stanford heart transplant dataset.

Summary

We haven't generated a summary for this paper yet.