Analytical stable Gaussian soliton supported by a parity-time-symmetric potential with power-law nonlinearity
Abstract: We address the existence and stability of spatial localized modes supported by a parity-time-symmetric complex potential in the presence of power-law nonlinearity. The analytical expressions of the localized modes, which are Gaussian in nature, are obtained in both (1+1) and (2+1) dimensions. A linear stability analysis corroborated by the direct numerical simulations reveals that these analytical localized modes can propagate stably for a wide range of the potential parameters and for various order nonlinearities. Some dynamical characteristics of these solutions, such as the power and the transverse power-flow density, are also examined.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.