Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Approximation of Rotations and Hessians matrices (1404.7195v1)

Published 29 Apr 2014 in cs.LG

Abstract: A new method to represent and approximate rotation matrices is introduced. The method represents approximations of a rotation matrix $Q$ with linearithmic complexity, i.e. with $\frac{1}{2}n\lg(n)$ rotations over pairs of coordinates, arranged in an FFT-like fashion. The approximation is "learned" using gradient descent. It allows to represent symmetric matrices $H$ as $QDQT$ where $D$ is a diagonal matrix. It can be used to approximate covariance matrix of Gaussian models in order to speed up inference, or to estimate and track the inverse Hessian of an objective function by relating changes in parameters to changes in gradient along the trajectory followed by the optimization procedure. Experiments were conducted to approximate synthetic matrices, covariance matrices of real data, and Hessian matrices of objective functions involved in machine learning problems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.