Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An empirical study of passive 802.11 Device Fingerprinting (1404.6457v1)

Published 25 Apr 2014 in cs.CR and cs.NI

Abstract: 802.11 device fingerprinting is the action of characterizing a target device through its wireless traffic. This results in a signature that may be used for identification, network monitoring or intrusion detection. The fingerprinting method can be active by sending traffic to the target device, or passive by just observing the traffic sent by the target device. Many passive fingerprinting methods rely on the observation of one particular network feature, such as the rate switching behavior or the transmission pattern of probe requests. In this work, we evaluate a set of global wireless network parameters with respect to their ability to identify 802.11 devices. We restrict ourselves to parameters that can be observed passively using a standard wireless card. We evaluate these parameters for two different tests: i) the identification test that returns one single result being the closest match for the target device, and ii) the similarity test that returns a set of devices that are close to the target devices. We find that the network parameters transmission time and frame inter-arrival time perform best in comparison to the other network parameters considered. Finally, we focus on inter-arrival times, the most promising parameter for device identification, and show its dependency from several device characteristics such as the wireless card and driver but also running applications.

Citations (91)

Summary

We haven't generated a summary for this paper yet.