Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient synthesis of universal Repeat-Until-Success circuits (1404.5320v2)

Published 21 Apr 2014 in quant-ph and cs.ET

Abstract: Recently, it was shown that Repeat-Until-Success (RUS) circuits can achieve a $2.5$ times reduction in expected $T$-count over ancilla-free techniques for single-qubit unitary decomposition. However, the previously best known algorithm to synthesize RUS circuits requires exponential classical runtime. In this paper we present an algorithm to synthesize an RUS circuit to approximate any given single-qubit unitary within precision $\varepsilon$ in probabilistically polynomial classical runtime. Our synthesis approach uses the Clifford+$T$ basis, plus one ancilla qubit and measurement. We provide numerical evidence that our RUS circuits have an expected $T$-count on average $2.5$ times lower than the theoretical lower bound of $3 \log_2 (1/\varepsilon)$ for ancilla-free single-qubit circuit decomposition.

Citations (63)

Summary

We haven't generated a summary for this paper yet.