Papers
Topics
Authors
Recent
Search
2000 character limit reached

Monge-Kantorovich norms on spaces of vector measures

Published 19 Apr 2014 in math.FA | (1404.4980v1)

Abstract: One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued functions is defined. Using this integral, different norms (we called them Monge-Kantorovich norm, modified Monge-Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.