Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly Optimal Computations with Structured Matrices (1404.4768v1)

Published 18 Apr 2014 in cs.SC

Abstract: We estimate the Boolean complexity of multiplication of structured matrices by a vector and the solution of nonsingular linear systems of equations with these matrices. We study four basic most popular classes, that is, Toeplitz, Hankel, Cauchy and Van-der-monde matrices, for which the cited computational problems are equivalent to the task of polynomial multiplication and division and polynomial and rational multipoint evaluation and interpolation. The Boolean cost estimates for the latter problems have been obtained by Kirrinnis in \cite{kirrinnis-joc-1998}, except for rational interpolation, which we supply now. All known Boolean cost estimates for these problems rely on using Kronecker product. This implies the $d$-fold precision increase for the $d$-th degree output, but we avoid such an increase by relying on distinct techniques based on employing FFT. Furthermore we simplify the analysis and make it more transparent by combining the representation of our tasks and algorithms in terms of both structured matrices and polynomials and rational functions. This also enables further extensions of our estimates to cover Trummer's important problem and computations with the popular classes of structured matrices that generalize the four cited basic matrix classes.

Citations (51)

Summary

We haven't generated a summary for this paper yet.