Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A classification of $SU(d)$-type C$^*$-tensor categories (1404.4204v2)

Published 16 Apr 2014 in math.OA and math.QA

Abstract: Kazhdan and Wenzl classified all rigid tensor categories with fusion ring isomorphic to the fusion ring of the group $SU(d)$. In this paper we consider the C$*$-analogue of this problem. Given a rigid C$*$-tensor category $\mathcal{C}$ with fusion ring isomorphic to the fusion ring of the group $SU(d)$, we can extract a constant $q$ from $\mathcal{C}$ such that there exists a $$-representation of the Hecke algebra $H_n(q)$ into $\mathcal{C}$. The categorical trace on $\mathcal{C}$ induces a Markov trace on $H_n(q)$. Using this Markov trace and a representation of $H_n(q)$ in $\textrm{Rep}\,(SU_{\sqrt{q}}(d))$ we show that $\mathcal{C}$ is equivalent to a twist of the category $\textrm{Rep}\,(SU_{\sqrt{q}}(d))$. Furthermore a sufficient condition on a C$^$-tensor category $\mathcal{C}$ is given for existence of an embedding of a twist of $\textrm{Rep}\,(SU_{\sqrt{q}}(d))$ in $\mathcal{C}$.

Summary

We haven't generated a summary for this paper yet.