Papers
Topics
Authors
Recent
Search
2000 character limit reached

Topological supersymmetry breaking: Definition and stochastic generalization of chaos and the limit of applicability of statistics

Published 15 Apr 2014 in math-ph, math.MP, and nlin.CD | (1404.4076v2)

Abstract: The concept of deterministic dynamical chaos has a long history and is well established by now. Nevertheless, its field theoretic essence and its stochastic generalization have been revealed only very recently. Within the newly found supersymmetric theory of stochastics (STS), all stochastic differential equations (SDEs) possess topological or de Rahm supersymmetry and stochastic chaos is the phenomenon of its spontaneous breakdown. Even though the STS is free of approximations and thus is technically solid, it is still missing a firm interpretational basis in order to be physically sound. Here, we make a few important steps toward the construction of the interpretational foundation for the STS. In particular, we discuss that one way to understand why the ground states of chaotic SDEs are conditional (not total) probability distributions, is that some of the variables have infinite memory of initial conditions and thus are not "thermalized", i.e., cannot be described by the initial-conditions-independent probability distributions. As a result, the definitive assumption of physical statistics that the ground state is a steady-state total probability distribution is not valid for chaotic SDEs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.