Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control point based exact description of higher dimensional trigonometric and hyperbolic curves and multivariate surfaces (1404.3767v1)

Published 14 Apr 2014 in math.NA and cs.GR

Abstract: Using the normalized B-bases of vector spaces of trigonometric and hyperbolic polynomials of finite order, we specify control point configurations for the exact description of higher dimensional (rational) curves and (hybrid) multivariate surfaces determined by coordinate functions that are exclusively given either by traditional trigonometric or hyperbolic polynomials in each of their variables. The usefulness and applicability of theoretical results and proposed algorithms are illustrated by many examples that also comprise the control point based exact description of several famous curves (like epi- and hypocycloids, foliums, torus knots, Bernoulli's lemniscate, hyperbolas), surfaces (such as pure trigonometric or hybrid surfaces of revolution like tori and hyperboloids, respectively) and 3-dimensional volumes. The core of the proposed modeling methods relies on basis transformation matrices with entries that can be efficiently obtained by order elevation. Providing subdivision formulae for curves described by convex combinations of these normalized B-basis functions and control points, we also ensure the possible incorporation of all proposed techniques into today's CAD systems.

Summary

We haven't generated a summary for this paper yet.