Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pathwise construction of tree-valued Fleming-Viot processes (1404.3682v4)

Published 14 Apr 2014 in math.PR

Abstract: In a random complete and separable metric space that we call the lookdown space, we encode the genealogical distances between all individuals ever alive in a lookdown model with simultaneous multiple reproduction events. We construct families of probability measures on the lookdown space and on an extension of it that allows to include the case with dust. From this construction, we read off the tree-valued $\Xi$-Fleming-Viot processes and deduce path properties. For instance, these processes usually have a.s. c`adl`ag paths with jumps at the times of large reproduction events. In the case of coming down from infinity, the construction on the lookdown space also allows to read off a process with values in the space of measure-preserving isometry classes of compact metric measure spaces, endowed with the Gromov-Hausdorff-Prohorov metric. This process has a.s. c`adl`ag paths with additional jumps at the extinction times of parts of the population.

Summary

We haven't generated a summary for this paper yet.