Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary interpolation for slice hyperholomorphic Schur functions (1404.3352v2)

Published 13 Apr 2014 in math.CV and math.FA

Abstract: A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers $\kappa_1, \ldots, \kappa_N$, quaternions $p_1, \ldots, p_N$ all of modulus $1$, so that the $2$-spheres determined by each point do not intersect and $p_u \neq 1$ for $u = 1,\ldots, N$, and quaternions $s_1, \ldots, s_N$, we wish to find a slice hyperholomorphic Schur function $s$ so that $$\lim_{\substack{r\rightarrow 1\ r\in(0,1)}} s(r p_u) = s_u\quad {\rm for} \quad u=1,\ldots, N,$$ and $$\lim_{\substack{r\rightarrow 1\ r\in(0,1)}}\frac{1-s(rp_u)\overline{s_u}}{1-r}\le\kappa_u,\quad {\rm for} \quad u=1,\ldots, N.$$ Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces.

Summary

We haven't generated a summary for this paper yet.