Boundary interpolation for slice hyperholomorphic Schur functions (1404.3352v2)
Abstract: A boundary Nevanlinna-Pick interpolation problem is posed and solved in the quaternionic setting. Given nonnegative real numbers $\kappa_1, \ldots, \kappa_N$, quaternions $p_1, \ldots, p_N$ all of modulus $1$, so that the $2$-spheres determined by each point do not intersect and $p_u \neq 1$ for $u = 1,\ldots, N$, and quaternions $s_1, \ldots, s_N$, we wish to find a slice hyperholomorphic Schur function $s$ so that $$\lim_{\substack{r\rightarrow 1\ r\in(0,1)}} s(r p_u) = s_u\quad {\rm for} \quad u=1,\ldots, N,$$ and $$\lim_{\substack{r\rightarrow 1\ r\in(0,1)}}\frac{1-s(rp_u)\overline{s_u}}{1-r}\le\kappa_u,\quad {\rm for} \quad u=1,\ldots, N.$$ Our arguments relies on the theory of slice hyperholomorphic functions and reproducing kernel Hilbert spaces.