Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decreasing Weighted Sorted $\ell_1$ Regularization (1404.3184v1)

Published 11 Apr 2014 in cs.CV, cs.IT, cs.LG, and math.IT

Abstract: We consider a new family of regularizers, termed {\it weighted sorted $\ell_1$ norms} (WSL1), which generalizes the recently introduced {\it octagonal shrinkage and clustering algorithm for regression} (OSCAR) and also contains the $\ell_1$ and $\ell_{\infty}$ norms as particular instances. We focus on a special case of the WSL1, the {\sl decreasing WSL1} (DWSL1), where the elements of the argument vector are sorted in non-increasing order and the weights are also non-increasing. In this paper, after showing that the DWSL1 is indeed a norm, we derive two key tools for its use as a regularizer: the dual norm and the Moreau proximity operator.

Citations (52)

Summary

We haven't generated a summary for this paper yet.