Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lie symmetries for Lie systems: applications to systems of ODEs and PDEs (1404.2740v1)

Published 10 Apr 2014 in math-ph and math.MP

Abstract: A {\it Lie system} is a nonautonomous system of first-order differential equations admitting a {\it superposition rule}, i.e., a map expressing its general solution in terms of a generic family of particular solutions and some constants. Using that a Lie system can be considered as a curve in a finite-dimensional Lie algebra of vector fields, a so-called {\it Vessiot--Guldberg Lie algebra}, we associate every Lie system with a Lie algebra of Lie point symmetries induced by the Vessiot--Guldberg Lie algebra. This enables us to derive Lie symmetries of relevant physical systems described by first- and higher-order systems of differential equations by means of Lie systems in an easier way than by standard methods. A generalization of our results to partial differential equations is introduced. Among other applications, Lie symmetries for several new and known generalizations of the real Riccati equation are studied.

Summary

We haven't generated a summary for this paper yet.