Papers
Topics
Authors
Recent
2000 character limit reached

A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data

Published 9 Apr 2014 in math.NA | (1404.2647v2)

Abstract: Stochastic collocation methods for approximating the solution of partial differential equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality whereby increases in the stochastic dimension cause an explosion of the computational effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations to reduce the overall computational complexity. In addition, our proposed approach utilizes, for approximation in stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity which can then be used for approximating statistics of the solution as well as for building high-order surrogates featuring faster convergence rates. A rigorous convergence and computational cost analysis of the new multilevel stochastic collocation method is provided, demonstrating its advantages compared to standard single-level stochastic collocation approximations as well as MLMC methods. Numerical results are provided that illustrate the theory and the effectiveness of the new multilevel method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.