Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kählerian information geometry for signal processing (1404.2006v3)

Published 8 Apr 2014 in math.DG, cs.IT, cs.SY, math.IT, math.ST, and stat.TH

Abstract: We prove the correspondence between the information geometry of a signal filter and a K\"ahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a K\"ahler manifold. The square of the complex cepstrum norm of the signal filter corresponds to the K\"ahler potential. The Hermitian structure of the K\"ahler manifold is explicitly emergent if and only if the impulse response function of the highest degree in $z$ is constant in model parameters. The K\"ahlerian information geometry takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor. Moreover, $\alpha$-generalization on the geometric tensors is linear in $\alpha$. It is also robust to find Bayesian predictive priors, such as superharmonic priors, because Laplace-Beltrami operators on K\"ahler manifolds are in much simpler forms than those of the non-K\"ahler manifolds. Several time series models are studied in the K\"ahlerian information geometry.

Citations (10)

Summary

We haven't generated a summary for this paper yet.