Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tighter Fourier Transform Complexity Tradeoffs (1404.1741v13)

Published 7 Apr 2014 in cs.CC

Abstract: The Fourier Transform is one of the most important linear transformations used in science and engineering. Cooley and Tukey's Fast Fourier Transform (FFT) from 1964 is a method for computing this transformation in time $O(n\log n)$. Achieving a matching lower bound in a reasonable computational model is one of the most important open problems in theoretical computer science. In 2014, improving on his previous work, Ailon showed that if an algorithm speeds up the FFT by a factor of $b=b(n)\geq 1$, then it must rely on computing, as an intermediate "bottleneck" step, a linear mapping of the input with condition number $\Omega(b(n))$. Our main result shows that a factor $b$ speedup implies existence of not just one but $\Omega(n)$ $b$-ill conditioned bottlenecks occurring at $\Omega(n)$ different steps, each causing information from independent (orthogonal) components of the input to either overflow or underflow. This provides further evidence that beating FFT is hard. Our result also gives the first quantitative tradeoff between computation speed and information loss in Fourier computation on fixed word size architectures. The main technical result is an entropy analysis of the Fourier transform under transformations of low trace, which is interesting in its own right.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Nir Ailon (31 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.