Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two CSCS-based iteration methods for solving absolute value equations (1404.1678v8)

Published 7 Apr 2014 in math.NA and cs.NA

Abstract: Recently, two families of HSS-based iteration methods are constructed for solving the system of absolute value equations (AVEs), which is a class of non-differentiable NP-hard problems. In this study, we establish the Picard-CSCS iteration method and the nonlinear CSCS-like iteration method for AVEs involving the Toeplitz matrix. Then, we analyze the convergence of the Picard-CSCS iteration method for solving AVEs. By using the theory about nonsmooth analysis, we particularly prove the convergence of the nonlinear CSCS-like iterationsolver for AVEs. The advantage of these methods is that they do not require the storage of coefficient matrices at all, and the sub-system of linear equations can be solved efficiently via the fast Fourier transforms (FFTs). Therefore, computational cost and storage can be saved in practical implementations. Numerical examples including numerical solutions of nonlinear fractional diffusion equations are reported to show the effectiveness of the proposed methods in comparison with some existing methods.

Citations (31)

Summary

We haven't generated a summary for this paper yet.