Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Rees Valuations of Complete Ideals in a Regular Local Ring (1404.1524v1)

Published 5 Apr 2014 in math.AC

Abstract: Let I be a complete m-primary ideal of a regular local ring (R,m). In the case where R has dimension two, the beautiful theory developed by Zariski implies that I factors uniquely as a product of powers of simple complete ideals and each of the simple complete factors of I has a unique Rees valuation. In the higher dimensional case, a simple complete ideal of R often has more than one Rees valuation, and a complete m-primary ideal I may have finitely many or infinitely many base points. For the ideals having finitely many base points, Lipman proves a unique factorization involving special star-simple complete ideals with possibly negative exponents of the factors. Let T be an infinitely near point to R with dim R = dim T and T having residue field equal to R/m. We prove that the special star simple complete ideal associated with the sequence from R to T has a unique Rees valuation if and only if either dim R = 2 or there is no change of direction in the unique finite sequence of local quadratic transforms from R to T. We also examine conditions for a complete ideal to be projectively full.

Summary

We haven't generated a summary for this paper yet.