Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast computation of uncertainty quantification measures in the geostatistical approach to solve inverse problems (1404.1263v3)

Published 4 Apr 2014 in math.NA

Abstract: We consider the computational challenges associated with uncertainty quantification involved in parameter estimation such as seismic slowness and hydraulic transmissivity fields. The reconstruction of these parameters can be mathematically described as Inverse Problems which we tackle using the Geostatistical approach. The quantification of uncertainty in the Geostatistical approach involves computing the posterior covariance matrix which is prohibitively expensive to fully compute and store. We consider an efficient representation of the posterior covariance matrix at the maximum a posteriori (MAP) point as the sum of the prior covariance matrix and a low-rank update that contains information from the dominant generalized eigenmodes of the data misfit part of the Hessian and the inverse covariance matrix. The rank of the low-rank update is typically independent of the dimension of the unknown parameter. The cost of our method scales as $\bigO(m\log m)$ where $m $ dimension of unknown parameter vector space. Furthermore, we show how to efficiently compute measures of uncertainty that are based on scalar functions of the posterior covariance matrix. The performance of our algorithms is demonstrated by application to model problems in synthetic travel-time tomography and steady-state hydraulic tomography. We explore the accuracy of the posterior covariance on different experimental parameters and show that the cost of approximating the posterior covariance matrix depends on the problem size and is not sensitive to other experimental parameters.

Citations (42)

Summary

We haven't generated a summary for this paper yet.