Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Worst-case Throughput Analysis for Parametric Rate and Parametric Actor Execution Time Scenario-Aware Dataflow Graphs (1404.0089v1)

Published 1 Apr 2014 in cs.PL

Abstract: Scenario-aware dataflow (SADF) is a prominent tool for modeling and analysis of dynamic embedded dataflow applications. In SADF the application is represented as a finite collection of synchronous dataflow (SDF) graphs, each of which represents one possible application behaviour or scenario. A finite state machine (FSM) specifies the possible orders of scenario occurrences. The SADF model renders the tightest possible performance guarantees, but is limited by its finiteness. This means that from a practical point of view, it can only handle dynamic dataflow applications that are characterized by a reasonably sized set of possible behaviours or scenarios. In this paper we remove this limitation for a class of SADF graphs by means of SADF model parametrization in terms of graph port rates and actor execution times. First, we formally define the semantics of the model relevant for throughput analysis based on (max,+) linear system theory and (max,+) automata. Second, by generalizing some of the existing results, we give the algorithms for worst-case throughput analysis of parametric rate and parametric actor execution time acyclic SADF graphs with a fully connected, possibly infinite state transition system. Third, we demonstrate our approach on a few realistic applications from digital signal processing (DSP) domain mapped onto an embedded multi-processor architecture.

Citations (12)

Summary

We haven't generated a summary for this paper yet.