Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Multiplier Hopf Algebras II. The source and target algebras (1403.7906v2)

Published 31 Mar 2014 in math.RA

Abstract: In this paper, we continue the study of weak multiplier Hopf algebras. We recall the notions of the source and target maps $\varepsilon_s$ and $\varepsilon_t$, as well as of the source and target algebras. Then we investigate these objects further. Among other things, we show that the canonical idempotent $E$ (which is eventually $\Delta(1)$) belongs to the multiplier algebra $M(B\otimes C)$ where $B=\varepsilon_s(A)$ and $C=\varepsilon_t(A)$ and that it is a separability idempotent. We also consider special cases and examples in this paper. In particular, we see how for any weak multiplier Hopf algebra, it is possible to make $C\otimes B$ (with $B$ and $C$ as above) into a new weak multiplier Hopf algebra. In a sense, it forgets the 'Hopf algebra part' of the original weak multiplier Hopf algebra and only remembers the source and target algebras. It is in turn generalized to the case of any pair of non-degenerate algebras $B$ and $C$ with a separability idempotent $E\in M(B\otimes C)$. We get another example using this theory associated to any discrete quantum group (a multiplier Hopf algebra of discrete type with a normalized cointegral). Finally we also consider the well-known 'quantization' of the groupoid that comes from an action of a group on a set. All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are not weak Hopf algebras).

Summary

We haven't generated a summary for this paper yet.