Papers
Topics
Authors
Recent
2000 character limit reached

On a Poissonian Change-Point Model with Variable Jump Size

Published 31 Mar 2014 in math.ST and stat.TH | (1403.7866v2)

Abstract: A model of Poissonian observation having a jump (change-point) in the intensity function is considered. Two cases are studied. The first one corresponds to the situation when the jump size converges to a non-zero limit, while in the second one the limit is zero. The limiting likelihood ratios in these two cases are quite different. In the first case, like in the case of a fixed jump size, the normalized likelihood ratio converges to a log Poisson process. In the second case, the normalized likelihood ratio converges to a log Wiener process, and so, the statistical problems of parameter estimation and hypotheses testing are asymptotically equivalent in this case to the well known problems of change-point estimation and testing for the model of a signal in white Gaussian noise. The properties of the maximum likelihood and Bayesian estimators, as well as those of the general likelihood ratio, Wald's and Bayesian tests are deduced form the convergence of normalized likelihood ratios. The convergence of the moments of the estimators is also established. The obtained theoretical results are illustrated by numerical simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.