Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A renormalisation group method. III. Perturbative analysis (1403.7252v2)

Published 28 Mar 2014 in math-ph, math.DS, math.MP, and math.PR

Abstract: This paper is the third in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. In this paper, we motivate and present a general approach towards second-order perturbative renormalisation, and apply it to a specific supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on $\mathbb{Z}d$. Our focus is on the critical dimension $d=4$. The results include the derivation of the perturbative flow of the coupling constants, with accompanying estimates on the coefficients in the flow. These are essential results for subsequent application to the 4-dimensional weakly self-avoiding walk, including a proof of existence of logarithmic corrections to their critical scaling. With minor modifications, our results also apply to the 4-dimensional $n$-component $|\varphi|4$ spin model.

Summary

We haven't generated a summary for this paper yet.