Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical and Simulated Adjustments of Composite Likelihood Ratio Statistics (1403.7093v2)

Published 27 Mar 2014 in stat.CO

Abstract: Composite likelihood inference has gained much popularity thanks to its computational manageability and its theoretical properties. Unfortunately, performing composite likelihood ratio tests is inconvenient because of their awkward asymptotic distribution. There are many proposals for adjusting composite likelihood ratio tests in order to recover an asymptotic chi square distribution, but they all depend on the sensitivity and variability matrices. The same is true for Wald-type and score-type counterparts. In realistic applications sensitivity and variability matrices usually need to be estimated, but there are no comparisons of the performance of composite likelihood based statistics in such an instance. A comparison of the accuracy of inference based on the statistics considering two methods typically employed for estimation of sensitivity and variability matrices, namely an empirical method that exploits independent observations, and Monte Carlo simulation, is performed. The results in two examples involving the pairwise likelihood show that a very large number of independent observations should be available in order to obtain accurate coverages using empirical estimation, while limited simulation from the full model provides accurate results regardless of the availability of independent observations.

Summary

We haven't generated a summary for this paper yet.