Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuum limit of total variation on point clouds (1403.6355v3)

Published 25 Mar 2014 in math.ST, math.AP, stat.ML, and stat.TH

Abstract: We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when is the cut capacity, and more generally total variation, on these graphs a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of $\Gamma$-convergence. We obtain almost optimal conditions on the scaling, as number of points increases, of the size of the neighborhood over which the points are connected by an edge for the $\Gamma$-convergence to hold. Taking the limit is enabled by a transportation based metric which allows to suitably compare functionals defined on different point clouds.

Citations (142)

Summary

We haven't generated a summary for this paper yet.