Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coherent Multi-Sentence Video Description with Variable Level of Detail (1403.6173v1)

Published 24 Mar 2014 in cs.CV and cs.CL

Abstract: Humans can easily describe what they see in a coherent way and at varying level of detail. However, existing approaches for automatic video description are mainly focused on single sentence generation and produce descriptions at a fixed level of detail. In this paper, we address both of these limitations: for a variable level of detail we produce coherent multi-sentence descriptions of complex videos. We follow a two-step approach where we first learn to predict a semantic representation (SR) from video and then generate natural language descriptions from the SR. To produce consistent multi-sentence descriptions, we model across-sentence consistency at the level of the SR by enforcing a consistent topic. We also contribute both to the visual recognition of objects proposing a hand-centric approach as well as to the robust generation of sentences using a word lattice. Human judges rate our multi-sentence descriptions as more readable, correct, and relevant than related work. To understand the difference between more detailed and shorter descriptions, we collect and analyze a video description corpus of three levels of detail.

Overview of Coherent Multi-Sentence Video Description with Variable Level of Detail

The paper addresses critical limitations in the field of automatic video description, particularly emphasizing the generation of multi-sentence descriptions at various levels of detail. Traditional methods have predominantly focused on producing single-sentence outputs at a fixed level of granularity. In contrast, the authors propose a novel framework capable of generating coherent multi-sentence descriptions that adaptively adjust the level of detail depending on the complexity of the video content.

The authors' approach is structured around a two-step process. Initially, they predict a semantic representation (SR) from video data. Subsequently, they leverage this SR to generate natural language descriptions. The SR is crucial in maintaining consistency across sentences, which is achieved by enforcing a uniform topic. This method facilitates the generation of accurate and coherent multi-sentence descriptions that human judges have rated favorably in terms of readability, correctness, and relevance compared to existing techniques.

To tackle varying levels of detail in descriptions, the paper presents an analysis of a new video description corpus, which the authors have collected to understand how descriptions differ at various detail levels. This analysis underscores that shorter descriptions emphasize more distinctive activities and objects, guiding the proposed system to verbalize only the most relevant segments.

Improvements to visual recognition are a significant aspect of this paper. The proposed hand-centric object recognition approach noticeably enhances the recognition of manipulated objects. This is crucial for generating detailed descriptions where all handled objects must be accurately recognized and described.

In the domain of NLP, the authors advance the sentence generation process using Statistical Machine Translation (SMT). By incorporating probabilistic outputs in a word lattice, their method accommodates the uncertainty in visual input, thus improving the LLM's ability to generate coherent and contextually accurate multi-sentence outputs.

The paper systematically validates its contributions through an array of experimental evaluations. The results highlight significant improvements in BLEU scores (both per sentence and per description) and favorable scores in human evaluations across readability, correctness, and relevance. Notably, the probabilistic approach in SMT decoding leads to more natural and readable sentences, demonstrating the method’s efficacy in handling the variations in video content and description detail levels.

Regarding implications, the proposed framework has practical applications in areas requiring nuanced video descriptions, such as assistive technology for visually impaired users, video content organization, and retrieval systems. Theoretically, it opens new avenues in semantic video analysis, advancing the integration of computer vision with NLP.

Future developments could explore further enhancements to the SR to incorporate complex scene dynamics and interactions. Additionally, extending the approach to broader contexts beyond cooking videos could validate its generalizability. Moreover, deeper exploration into adaptive LLMs that can learn from minimal data would further refine the precision and applicability of the framework across different domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Anna Senina (1 paper)
  2. Marcus Rohrbach (75 papers)
  3. Wei Qiu (26 papers)
  4. Annemarie Friedrich (26 papers)
  5. Sikandar Amin (8 papers)
  6. Mykhaylo Andriluka (19 papers)
  7. Manfred Pinkal (10 papers)
  8. Bernt Schiele (210 papers)
Citations (215)