Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Detection of Single & Multiple Events at Sentence-Level (1403.6023v1)

Published 24 Mar 2014 in cs.CL and cs.LG

Abstract: Event classification at sentence level is an important Information Extraction task with applications in several NLP, IR, and personalization systems. Multi-label binary relevance (BR) are the state-of-art methods. In this work, we explored new multi-label methods known for capturing relations between event types. These new methods, such as the ensemble Chain of Classifiers, improve the F1 on average across the 6 labels by 2.8% over the Binary Relevance. The low occurrence of multi-label sentences motivated the reduction of the hard imbalanced multi-label classification problem with low number of occurrences of multiple labels per instance to an more tractable imbalanced multiclass problem with better results (+ 4.6%). We report the results of adding new features, such as sentiment strength, rhetorical signals, domain-id (source-id and date), and key-phrases in both single-label and multi-label event classification scenarios.

Summary

We haven't generated a summary for this paper yet.