Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CUR Algorithm with Incomplete Matrix Observation (1403.5647v1)

Published 22 Mar 2014 in cs.LG and stat.ML

Abstract: CUR matrix decomposition is a randomized algorithm that can efficiently compute the low rank approximation for a given rectangle matrix. One limitation with the existing CUR algorithms is that they require an access to the full matrix A for computing U. In this work, we aim to alleviate this limitation. In particular, we assume that besides having an access to randomly sampled d rows and d columns from A, we only observe a subset of randomly sampled entries from A. Our goal is to develop a low rank approximation algorithm, similar to CUR, based on (i) randomly sampled rows and columns from A, and (ii) randomly sampled entries from A. The proposed algorithm is able to perfectly recover the target matrix A with only O(rn log n) number of observed entries. In addition, instead of having to solve an optimization problem involved trace norm regularization, the proposed algorithm only needs to solve a standard regression problem. Finally, unlike most matrix completion theories that hold only when the target matrix is of low rank, we show a strong guarantee for the proposed algorithm even when the target matrix is not low rank.

Citations (1)

Summary

We haven't generated a summary for this paper yet.