Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two recursive GMRES-type methods for shifted linear systems with general preconditioning (1403.4428v3)

Published 18 Mar 2014 in math.NA and cs.NA

Abstract: We present two minimum residual methods for solving sequences of shifted linear systems, the right-preconditioned shifted GMRES and shifted recycled GMRES algorithms which use a seed projection strategy often employed to solve multiple related problems. These methods are compatible with general preconditioning of all systems, and when restricted to right preconditioning, require no extra applications of the operator or preconditioner. These seed projection methods perform a minimum residual iteration for the base system while improving the approximations for the shifted systems at little additional cost. The iteration continues until the base system approximation is of satisfactory quality. The method is then recursively called for the remaining unconverged systems. We present both methods inside of a general framework which allows these techniques to be extended to the setting of flexible preconditioning and inexact Krylov methods. We present some analysis of such methods and numerical experiments demonstrating the effectiveness of the algorithms we have derived.

Citations (17)

Summary

We haven't generated a summary for this paper yet.