Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global estimates for kernels of Neumann series and Green's functions (1403.3945v1)

Published 16 Mar 2014 in math.AP, math.CA, math.FA, and math.SP

Abstract: We obtain global pointwise estimates for kernels of the resolvents $(I-T){-1}$ of integral operators [Tf(x) = \int_{\Omega} K(x, y) f(y) d \omega(y)] on $L2(\Omega, \omega)$ under the assumptions that $||T||{L2(\omega) \rightarrow L2 (\omega)} <1$ and $d(x,y)=1/K(x,y)$ is a quasi-metric. Let $K_1=K$ and $K_j(x,y) = \int{\Omega} K_{j-1} (x,z) K(z,y) \, d \omega (z)$ for $j \geq 1$. Then $$ K(x,y) e{c K_2 (x,y)/K(x,y)} \leq \sum_{j=1}{\infty} K_j(x,y) \leq K(x,y) e{C K_2 (x,y)/K(x,y)}, $$ for some constants $c,C>0$. Our estimates yield matching bilateral bounds for Green's functions of the fractional Schr\"{o}dinger operators $(-\triangle){\alpha/2}-q$ with arbitrary nonnegative potentials $q$ on $\mathbb{R}n$ for $0<\alpha<n$, or on a bounded non-tangentially accessible domain $\Omega$ for $0<\alpha \le 2$. In probabilistic language, these results can be reformulated as explicit bilateral bounds for the conditional gauge associated with Brownian motion or $\alpha$-stable L\'evy processes.

Summary

We haven't generated a summary for this paper yet.