Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Iterative Projection Method for Approximating Fixed Point Problems and Variational Inequality Problems (1403.3390v2)

Published 13 Mar 2014 in math.FA and math.OC

Abstract: In this paper, we introduce and study a new extragradient iterative process for finding a common element of the set of fixed points of an infinite family of nonexpansive mappings and the set of solutions of a variational inequality for an inverse strongly monotone mapping in a real Hilbert space. Also, we prove that under quite mild conditions the iterative sequence defined by our new extragradient method converges strongly to a solution of the fixed point problem for an infinite family of nonexpansive mappings and the classical variational inequality problem. In addition, utilizing this result, we provide some applications of the considered problem not just giving a pure extension of existing mathematical problems.

Summary

We haven't generated a summary for this paper yet.