Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling Recurrent Neural Networks by Conceptors (1403.3369v4)

Published 13 Mar 2014 in cs.NE

Abstract: The human brain is a dynamical system whose extremely complex sensor-driven neural processes give rise to conceptual, logical cognition. Understanding the interplay between nonlinear neural dynamics and concept-level cognition remains a major scientific challenge. Here I propose a mechanism of neurodynamical organization, called conceptors, which unites nonlinear dynamics with basic principles of conceptual abstraction and logic. It becomes possible to learn, store, abstract, focus, morph, generalize, de-noise and recognize a large number of dynamical patterns within a single neural system; novel patterns can be added without interfering with previously acquired ones; neural noise is automatically filtered. Conceptors help explaining how conceptual-level information processing emerges naturally and robustly in neural systems, and remove a number of roadblocks in the theory and applications of recurrent neural networks.

Citations (117)

Summary

We haven't generated a summary for this paper yet.