Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Recovery with Linear and Nonlinear Observations: Dependent and Noisy Data (1403.3109v1)

Published 12 Mar 2014 in cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We formulate sparse support recovery as a salient set identification problem and use information-theoretic analyses to characterize the recovery performance and sample complexity. We consider a very general model where we are not restricted to linear models or specific distributions. We state non-asymptotic bounds on recovery probability and a tight mutual information formula for sample complexity. We evaluate our bounds for applications such as sparse linear regression and explicitly characterize effects of correlation or noisy features on recovery performance. We show improvements upon previous work and identify gaps between the performance of recovery algorithms and fundamental information.

Citations (5)

Summary

We haven't generated a summary for this paper yet.