Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On McMullen-like mappings (1403.2420v1)

Published 10 Mar 2014 in math.DS

Abstract: We introduce a generalization of the McMullen family $f_{\lambda}(z)=zn+\lambda/zd$. In 1988, C. McMullen showed that the Julia set of $f_{\lambda}$ is a Cantor set of circles if and only if $1/n+1/d<1$ and the simple critical values of $f_{\lambda}$ belong to the trap door. We generalize this behavior defining a McMullen-like mapping as a rational map $f$ associated to a hyperbolic postcritically finite polynomial $P$ and a pole data $\mathcal{D}$ where we encode, basically, the location of every pole of $f$ and the local degree at each pole. In the McMullen family, the polynomial $P$ is $z\mapsto zn$ and the pole data $\mathcal{D}$ is the pole located at the origin that maps to infinity with local degree $d$. As in the McMullen family $f_{\lambda}$, we can characterize a McMullen-like mapping using an arithmetic condition depending only on the polynomial $P$ and the pole data $\mathcal{D}$. We prove that the arithmetic condition is necessary using the theory of Thurston's obstructions, and sufficient by quasiconformal surgery.

Summary

We haven't generated a summary for this paper yet.