Spatio-temporal càdlàg functional marked point processes: Unifying spatio-temporal frameworks (1403.2363v1)
Abstract: This paper defines the class of c`adl`ag functional marked point processes (CFMPPs). These are (spatio-temporal) point processes marked by random elements which take values in a c`adl`ag function space, i.e. the marks are given by c`adl`ag stochastic processes. We generalise notions of marked (spatio-temporal) point processes and indicate how this class, in a sensible way, connects the point process framework with the random fields framework. We also show how they can be used to construct a class of spatio-temporal Boolean models, how to construct different classes of these models by choosing specific mark functions, and how c`adl`ag functional marked Cox processes have a double connection to random fields. We also discuss finite CFMPPs, purely temporally well-defined CFMPPs and Markov CFMPPs. Furthermore, we define characteristics such as product densities, Palm distributions and conditional intensities, in order to develop statistical inference tools such as likelihood estimation schemes.