Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Node Removal Vulnerability of the Largest Component of a Network (1403.2024v1)

Published 9 Mar 2014 in cs.SI and cs.NI

Abstract: The connectivity structure of a network can be very sensitive to removal of certain nodes in the network. In this paper, we study the sensitivity of the largest component size to node removals. We prove that minimizing the largest component size is equivalent to solving a matrix one-norm minimization problem whose column vectors are orthogonal and sparse and they form a basis of the null space of the associated graph Laplacian matrix. A greedy node removal algorithm is then proposed based on the matrix one-norm minimization. In comparison with other node centralities such as node degree and betweenness, experimental results on US power grid dataset validate the effectiveness of the proposed approach in terms of reduction of the largest component size with relatively few node removals.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pin-Yu Chen (311 papers)
  2. Alfred O. Hero III (89 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.