Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric approach to (semi)-groups defined by automata via dual transducers (1403.1722v1)

Published 7 Mar 2014 in math.GR and cs.FL

Abstract: We give a geometric approach to groups defined by automata via the notion of enriched dual of an inverse transducer. Using this geometric correspondence we first provide some finiteness results, then we consider groups generated by the dual of Cayley type of machines. Lastly, we address the problem of the study of the action of these groups in the boundary. We show that examples of groups having essentially free actions without critical points lie in the class of groups defined by the transducers whose enriched dual generate a torsion-free semigroup. Finally, we provide necessary and sufficient conditions to have finite Schreier graphs on the boundary yielding to the decidability of the algorithmic problem of checking the existence of Schreier graphs on the boundary whose cardinalities are upper bounded by some fixed integer.

Citations (16)

Summary

We haven't generated a summary for this paper yet.