Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disimplicial arcs, transitive vertices, and disimplicial eliminations (1403.1628v1)

Published 7 Mar 2014 in cs.DM

Abstract: In this article we deal with the problems of finding the disimplicial arcs of a digraph and recognizing some interesting graph classes defined by their existence. A diclique of a digraph is a pair $V \to W$ of sets of vertices such that $v \to w$ is an arc for every $v \in V$ and $w \in W$. An arc $v \to w$ is disimplicial when $N-(w) \to N+(v)$ is a diclique. We show that the problem of finding the disimplicial arcs is equivalent, in terms of time and space complexity, to that of locating the transitive vertices. As a result, an efficient algorithm to find the bisimplicial edges of bipartite graphs is obtained. Then, we develop simple algorithms to build disimplicial elimination schemes, which can be used to generate bisimplicial elimination schemes for bipartite graphs. Finally, we study two classes related to perfect disimplicial elimination digraphs, namely weakly diclique irreducible digraphs and diclique irreducible digraphs. The former class is associated to finite posets, while the latter corresponds to dedekind complete finite posets.

Summary

We haven't generated a summary for this paper yet.