Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modules of the 0-Hecke algebra and quasisymmetric Schur functions (1403.1527v2)

Published 6 Mar 2014 in math.RT and math.CO

Abstract: We begin by deriving an action of the 0-Hecke algebra on standard reverse composition tableaux and use it to discover 0-Hecke modules whose quasisymmetric characteristics are the natural refinements of Schur functions known as quasisymmetric Schur functions. Furthermore, we classify combinatorially which of these 0-Hecke modules are indecomposable. From here, we establish that the natural equivalence relation arising from our 0-Hecke action has equivalence classes that are isomorphic to subintervals of the weak Bruhat order on the symmetric group. Focussing on the equivalence classes containing a canonical tableau we discover a new basis for the Hopf algebra of quasisymmetric functions, and use the cardinality of these equivalence classes to establish new enumerative results on truncated shifted reverse tableau studied by Panova and Adin-King-Roichman. Generalizing our 0-Hecke action to one on skew standard reverse composition tableaux, we derive 0-Hecke modules whose quasisymmetric characteristics are the skew quasisymmetric Schur functions of Bessenrodt et al. This enables us to prove a restriction rule that reflects the coproduct formula for quasisymmetric Schur functions, which in turn yields a quasisymmetric branching rule analogous to the classical branching rule for Schur functions.

Summary

We haven't generated a summary for this paper yet.