Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Illumination,Expression and Occlusion Invariant Pose-Adaptive Face Recognition System for Real-Time Applications (1403.1362v1)

Published 6 Mar 2014 in cs.CV

Abstract: Face recognition in real-time scenarios is mainly affected by illumination, expression and pose variations and also by occlusion. This paper presents the framework for pose adaptive component-based face recognition system. The framework proposed deals with all the above mentioned issues. The steps involved in the presented framework are (i) facial landmark localisation, (ii) facial component extraction, (iii) pre-processing of facial image (iv) facial pose estimation (v) feature extraction using Local Binary Pattern Histograms of each component followed by (vi) fusion of pose adaptive classification of components. By employing pose adaptive classification, the recognition process is carried out on some part of database, based on estimated pose, instead of applying the recognition process on the whole database. Pre-processing techniques employed to overcome the problems due to illumination variation are also discussed in this paper. Component-based techniques provide better recognition rates when face images are occluded compared to the holistic methods. Our method is simple, feasible and provides better results when compared to other holistic methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (7)

Summary

We haven't generated a summary for this paper yet.