Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost optimal sparsification of random geometric graphs (1403.1274v2)

Published 5 Mar 2014 in math.PR, cs.DM, cs.NI, and math.CO

Abstract: A random geometric irrigation graph $\Gamma_n(r_n,\xi)$ has $n$ vertices identified by $n$ independent uniformly distributed points $X_1,\ldots,X_n$ in the unit square $[0,1]2$. Each point $X_i$ selects $\xi_i$ neighbors at random, without replacement, among those points $X_j$ ($j\neq i$) for which $|X_i-X_j| < r_n$, and the selected vertices are connected to $X_i$ by an edge. The number $\xi_i$ of the neighbors is an integer-valued random variable, chosen independently with identical distribution for each $X_i$ such that $\xi_i$ satisfies $1\le \xi_i \le \kappa$ for a constant $\kappa>1$. We prove that when $r_n = \gamma_n \sqrt{\log n/n}$ for $\gamma_n \to \infty$ with $\gamma_n =o(n{1/6}/\log{5/6}n)$, then the random geometric irrigation graph experiences explosive percolation in the sense that when $\mathbf E \xi_i=1$, then the largest connected component has size $o(n)$ but if $\mathbf E \xi_i >1$, then the size of the largest connected component is with high probability $n-o(n)$. This offers a natural non-centralized sparsification of a random geometric graph that is mostly connected.

Citations (4)

Summary

We haven't generated a summary for this paper yet.