Papers
Topics
Authors
Recent
Search
2000 character limit reached

Splines and Wavelets on Geophysically Relevant Manifolds

Published 4 Mar 2014 in math.FA | (1403.0963v1)

Abstract: Analysis on the unit sphere $\mathbb{S}{2}$ found many applications in seismology, weather prediction, astrophysics, signal analysis, crystallography, computer vision, computerized tomography, neuroscience, and statistics. In the last two decades, the importance of these and other applications triggered the development of various tools such as splines and wavelet bases suitable for the unit spheres $\mathbb{S}{2}$, $>>\mathbb{S}{3}$ and the rotation group $SO(3)$. Present paper is a summary of some of results of the author and his collaborators on generalized (average) variational splines and localized frames (wavelets) on compact Riemannian manifolds. The results are illustrated by applications to Radon-type transforms on $\mathbb{S}{d}$ and $SO(3)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.