Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bell's inequality and extremal nonlocal box from Hardy's test for nonlocality (1403.0790v2)

Published 4 Mar 2014 in quant-ph

Abstract: Bell showed 50 years ago that quantum theory is nonlocal via his celebrated inequalities, turning the issue of quantum nonlocality from a matter of taste into a matter of test. Years later, Hardy proposed a test for nonlocality without inequality, which is a kind of "something-versus-nothing" argument. Hardy's test for $n$ particles induces an $n$-partite Bell's inequality with two dichotomic local measurements for each observer, which has been shown to be violated by all entangled pure states. Our first result is to show that the Bell-Hardy inequality arising form Hardy's nonlocality test is tight for an arbitrary number of parties, i.e., it defines a facet of the Bell polytope in the given scenario. On the other hand quantum theory is not that nonlocal since it forbids signaling and even not as nonlocal as allowed by non-signaling conditions, i.e., quantum mechanical predictions form a strict subset of the so called non-signaling polytope. In the scenario of each observer measuring two dichotomic observables, Fritz established a duality between the Bell polytope and the non-signaling polytope: tight Bell's inequalities, the facets of the Bell polytope, are in a one-to-one correspondence with extremal non-signaling boxes, the vertices of the non-signaling polytope. Our second result is to provide an alternative and more direct formula for this duality. As an example, the tight Bell-Hardy inequality gives rise to an extremal non-signaling box that serves as a natural multipartite generalization of Popescu-Rohrlich box.

Summary

We haven't generated a summary for this paper yet.