Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian linear regression with sparse priors (1403.0735v3)

Published 4 Mar 2014 in math.ST, stat.ME, and stat.TH

Abstract: We study full Bayesian procedures for high-dimensional linear regression under sparsity constraints. The prior is a mixture of point masses at zero and continuous distributions. Under compatibility conditions on the design matrix, the posterior distribution is shown to contract at the optimal rate for recovery of the unknown sparse vector, and to give optimal prediction of the response vector. It is also shown to select the correct sparse model, or at least the coefficients that are significantly different from zero. The asymptotic shape of the posterior distribution is characterized and employed to the construction and study of credible sets for uncertainty quantification.

Summary

We haven't generated a summary for this paper yet.