Optimal synchronization of complex networks
Abstract: We study optimal synchronization in networks of heterogeneous phase oscillators. Our main result is the derivation of a synchrony alignment function that encodes the interplay between network structure and oscillators' frequencies and can be readily optimized. We highlight its utility in two general problems: constrained frequency allocation and network design. In general, we find that synchronization is promoted by strong alignments between frequencies and the dominant Laplacian eigenvectors, as well as a matching between the heterogeneity of frequencies and network structure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.